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ABSTRACT

Conventional speech-enhancement techniques employ statistical
signal-processing algorithms. They are computationally efficient
and improve speech quality even under unknown noise conditions.
For these reasons, they are preferred for deployment in unpredictable
environments. One limitation of these algorithms is that they fail
to suppress non-stationary noise. This hinders their broad usage.
Emerging algorithms based on deep-learning promise to overcome
this limitation of conventional methods. However, these algorithms
under-perform when presented with noise conditions that were not
captured in the training data. In this paper, we propose a single-
channel speech-enhancement technique that combines the benefits
of both worlds to achieve the best listening-quality and recognition-
accuracy under conditions of noise that are both unknown and non-
stationary. Our method utilizes a conventional speech-enhancement
algorithm to produce an intermediate representation of the input data
by multiplying noisy input spectrogram features with gain vectors
(known as the suppression rule). We process this intermediate rep-
resentation through a recurrent neural-network based on long short-
term memory (LSTM) units. Furthermore, we train this network to
jointly learn two targets: a direct estimate of clean-speech features
and a noise-reduction mask. Based on this LSTM multi-style train-
ing (LSTM-MT) architecture, we demonstrate PESQ improvement
of 0.76 and a relative word-error rate reduction of 47.73%.

Index Terms— statistical speech enhancement, speech recogni-
tion, deep learning, recurrent networks

1. INTRODUCTION

Signals captured by a single microphone channel are often corrupted
by background noise and interference. Speech-enhancement algo-
rithms that remove these defects are helpful to improve intelligility
by both humans and automatic speech recognition (ASR) engines.

Classic algorithms for speech enhancement are based on sta-
tistical signal processing. Typically, they work in the frequency
domain; a representation that is produced by breaking down time-
domain signals into overlapping frames, weighting and transform-
ing them with the short-time Fourier transform (STFT). Conven-
tional algorithms apply a time-varying, real-valued suppression gain
to each frequency bin based on the estimated presence of speech
and noise. These gains range between 0 and 1; 0 if there is only
noise and 1 if there is only speech. To estimate this suppression
gain, most approaches assume that noise and speech signal mag-
nitudes have a Gaussian distribution and that noise changes slower
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than speech signals. They build a noise model - noise variances
for each frequency bin, typically by using voice activity detectors
(VAD). The suppression rule is a function of the prior and posterior
signal-to-noise-ratios (SNR). The oldest and still commonly used is
the Wiener suppression rule [1], which is optimal in the mean-square
error sense. Other frequently used suppression rules are the spec-
tral magnitude estimator [2], maximum likelihood amplitude esti-
mator [3], short-term minimum mean-square error (MMSE) estima-
tor [4], and log-spectral minimum mean-square error (log-MMSE)
estimator [5]. In [4], the authors propose to compute the prior SNR
as a geometric mean of the maximum-likelihood estimate of the cur-
rent and the previous frame. This process is known as decision-
directed approach (DDA). After estimation of the magnitude, the sig-
nal is converted back to the time domain using a procedure known as
overlap-and-add [6]. These conventional methods adapt to the noise
level and perform well with quasi-stationary noises but impulse non-
speech signals are typically not suppressed well.

Recently, a supervised learning framework has been proposed to
solve the problem, where a deep neural network (DNN) is trained
to map from the input to the output features. In [7], a regression
DNN is adopted using mapping-based method directly predicting
the clean spectrum from the noisy spectrum. In [8], a new archi-
tecture with two outputs is proposed to estimate the target speech
and interference simultaneously. In [9], a DNN is adopted to esti-
mate the ideal masks including the ideal binary mask (IBM) [10] for
each time-frequency (T-F) bin, where one is assigned if the signal-
to-noise (SNR) is above given threshold, and zero otherwise, and
ideal ratio mask (IRM) for each T-F bin, which is defined as the ratio
between the powers of the target signal and mixture [11]. The IRM
is another term for the suppression rule in the classic noise suppres-
sor. In [9] is also stated that estimating IRM leads to better speech
enhancement performance than that of IBM. In [12] authors make
one step further toward closer integration of the classic noise sup-
pressor and regression based estimators with neural networks. All
of the above methods are based on fully connected DNNs, where
the relationship between the neighbouring frames is not explicitly
modeled. Recurrent neural networks (RNNs) [13] may solve this
problem by using recursive structures between the previous frame
and the current frame to capture the long-term contextual informa-
tion and make a better prediction. In [14, 15], long short-term mem-
ory recurrent neural network (LSTM-RNN) was proposed for speech
enhancement. Compared with DNN-based speech enhancement, it
yields a superior performance of noise reduction at low signal-to-
noise ratios (SNRs).

In this paper, we propose a hybrid approach combining the ad-
vantages of the classic noise suppression (dealing well with quasi-
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Fig. 1. A block diagram of the proposed framework.

stationary noises) and the superb performance of the LSTM neural
networks for suppressing fast changing noise and interference sig-
nals. First, we enhance the speech by combining a conventional
and deep learning-based speech enhancement, reducing the station-
ary noise, where denoted as Approximate Speech Signal Estimation
(ASSE). The suppression rule is estimated using decision-directed
approach, as a geometric mean of the suppression rule from the pre-
vious frame and the estimated for the current frame using the clas-
sic estimation techniques. The conventional clean speech estima-
tor is not aggressive, preserves the speech qualify, but also leaves
noise and interference. Then a LSTM-based direct mapping regres-
sion model is used to estimate from the enhanced speech both clean
speech and the suppression rule. As output we can use either the
estimated clean speech, or to apply the suppression rule to the noisy
speech.

2. PROPOSED FRAMEWORK

A block diagram of the proposed deep learning framework is shown
in Fig. 1. At the training stage, the LSTM multi-style (LSTM-MT)
model is trained using the log-power spectra (LPS) of the training
data as input features, and the clean LPS and IRM as reference. The
LPS features as perceptually more relevant are adopted since [16].
IRM, or the suppression rule, can also be considered as a represen-
tation of the speech presence probability in each T-F bin [17]. The
LSTM-LPS and LSTM-IRM denote the estimated clean LPS and
IRM at the LSTM-MT’s two outputs, respectively.

The enhancement process for the l-th audio frame can be divided
into three successive steps. The first, denoted as approximate speech
signal estimation (ASSE), is to pre-process the noisy LPS X(l) by
computing and applying a suppression rule, yielding clean speech
approximate estimation Y(l). In the second stage the trained LSTM-
MT neural network uses Y(l) to produce estimations of the clean
speech Ŝ(l) and IRM M(l). In the third stage the estimated IRM
M(l) and the approximate clean speech estimation Y(l) are used to
estimate the output speech signal Z(l).

3. CLASSIC NOISE SUPPRESSOR

In classic noise suppression, a key role is played by the prior and
posterior SNRs, denoted by ξ(k, l) and γ(k, l), respectively. They
are defined as follows:

γ (k, l)
∆
= |X(k,l)|2

λ(k,l)
, ξ (k, l)

∆
= |S(k,l)|2

λ(k,l)
, (1)

where λ(k, l) denotes the noise variance for time frame l and
frequency bin k, and X(k, l) is the short-time Fourier transform
(STFFT) of the noisy signal. As the clean speech amplitude is
unknown, frequently it is estimated using the decision directed
approach [4]:

ξ (k, l) = α

∣∣∣Ŝ (k, l − 1)
∣∣∣2

λ (k, l)
+ (1− α)max (0, γ (k, l)− 1) . (2)

Here is utilized the fact that consecutive speech frames are highly
correlated, which allows using the clean speech amplitude estima-
tion from the previous frame. The suppression rule is function of the
prior and posterior SNRs:

G (k, l) = g (γ (k, l) , ξ (k, l)) . (3)

Then the estimated suppression rule is applied to the noisy signal to
receive the clean speech estimation:

Ŝ (k, l) = G (k, l)X (k, l) . (4)

The noise model is updated after processing of each frame:

λ (k, l + 1) = λ (k, l)+(1− P (k, l))
T

τN

(
|X (k, l)|2 − λ (k, l)

)
,

(5)
where T is the frame step, τN is the adaptation time constant, and
P (k, l) is the speech presence probability. The last can be either es-
timated by a VAD, or approximated by the suppression ruleG (k, l).

4. THE PROPOSED APPROACH

4.1. Approximate Speech Signal Estimation

First we follow the classic noise suppression algorithm to estimate
prior and posterior SNRs according to equations (2) and (1). Then
we estimate the suppression rule G (k, l) according to equation (3),
combine it with the IRM, estimated by the LSTM-MT, and compute
the approximate speech signal estimation (ASSE) as pre-processing
for LSTM-LPS:

Y (k, l) = log [δM (k, l) + (1− δ)G (k, l)] +X (k, l) (6)

Note that because we work with LPS we have to take a logarithm
of the suppression rule and the multiplication from equation (4) be-
comes a summation.

4.2. LSTM-based LPS and IRM estimation

Fig. 2 shows the architecture of the LSTM-based multi-target deep
learning block, which can be trained to learn the complex transfor-
mation from the noisy LPS features to clean LPS and IRM, denoted
as LSTM-MT. Acoustic context information along a segment of sev-
eral neighboring audio frames and all frequency bins can be fully
exploited by the LSTM to obtain a good LPS and IRM estimates in
adverse environments. The estimated IRM is restricted to be in the
range between zero and one, which can be directly used to represent
the speech presence probability. The IRM as a learning target is de-
fined as the proportion of the powers of the clean and noisy speech
in the corresponding T-F bin:

Mref (k, l) =
|S (k, l)|2

|X (k, l)|2
. (7)
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Fig. 2. A block diagram of LSTM-MT.

Training of this neural network requires synthetic data set with sepa-
rately known clean speech and noise signals. To train the LSTM-MT
model, supervised fine-tuning is used to minimize the mean squared
error (MSE) between both of the LSTM-LPS output Ŝ(k, l) and the
reference LPS S(k, l), and the LSTM-IRM output M(k, l) and the
reference IRM Mref(k, l), which is defined as

EMT =
∑
k,l

[
(Ŝ(k, l)− S(k, l))2

+(M(k, l)−Mref(k, l))
2] . (8)

This MSE is minimized using the stochastic gradient descent based
back-propagation method in a mini-batch mode.

4.3. Post-Processing Using LSTM-IRM

The LSTM-IRM output,M(k, l), can be utilized for post-processing
via a simple weighted average operation in LPS domain:

Z (k, l) = ηY (k, l) + (1− η) {X (k, l) + log [M (k, l)]} (9)

The output Z (k, l) can be directly fed to the waveform reconstruc-
tion module. The ensemble in the LPS domain is verified to be more
effective than that in the linear spectral domain.

4.4. Algorithm Summary

Our proposed approach combining conventional and LSTM-based
methods is summarized in Algorithm 1.

5. EXPERIMENTAL EVALUATION

5.1. Dataset and evaluation parameters

For evaluation of the proposed algorithm we used a synthetically
generated dataset. The clean speech corpus consists of 134 record-
ings, with 10 single sentence utterances each, pronounced by male,
female, and children voices in approximately equal proportion. The
average duration of these recordings is around 1 minute and 30 sec-
onds. The noise corpus consists of 377 recordings, each 5 min-
utes long, representing 25 types of noise (airport, cafe, kitchen, bar,

Algorithm 1 Speech enhancement algorithm using combination of
classic noise suppression and multi-style trained LSTM
Input: Log-power spectrum of the noisy signal X (k, l)
Output: Log-power spectrum of the estimated clean speech signal

Z (k, l)
1: for all short-time FFT frames l = 1, 2, ..., L do
2: for all frequency bins k = 1, 2, ...,K do
3: Compute the posterior SNR γ(k, l) using Eq.(1), and the

prior SNR ξ(k, l) using Eq.(2).
4: Compute the suppression gain G(k, l) using Eq.(3).
5: Compute the approximate speech estimation Y (k, l) fol-

lowing Eq.(6)
6: end for
7: Feed Y (l) into LSTM-MT and obtain the clean speech esti-

mation Ŝ(l) and IRM M (l)
8: for all frequency bins k = 1, 2, ...,K do
9: Use the estimated IRM M (k, l) and clean speech ap-

proximate estimation Y (k, l) to obtain the final estimated
speech Z (k, l) using Eq.(9).

10: end for
11: end for

etc.). We used 48 room impulse responses (RIR), obtained from a
room with T60 = 300 ms and distances between the speaker and
the microphone varying from 1 to 3 meters. To generate a noisy
file first we randomly select a clean speech file and set its level ac-
cording to a human voice loudness model (Gaussian distribution,
µS = 65 dB SPL @1 m, σS = 8 dB). Then we randomly select a
RIR and convolve the speech signal with it to generate reverber-
ated speech signal. Last we randomly select a noise file and set
its level according to a room noise model (Gaussian distribution,
µN = 50 dB SPL, σN = 10 dB) and add it to the reverberated speech
signal. The resulting file SNR is limited to the range of [0,+30] dB.
All signals were sampled at 16 kHz sampling rate and stored with
24 bits precision. We assumed 120 dB clipping level of the micro-
phone, which is typical for most of the digital microphones today.
Using this approach we generated 7,500 noisy files for training, 150
for verification, and 150 for testing. The total length of the training
dataset is 100 hours. All of the results in this paper are obtained by
processing the testing dataset.

For evaluation of the output signal quality, as perceived by
humans, we use Perceptual Evaluation of the Speech Quality
(PESQ) algorithm, which is standardized as IUT-T Recommen-
dation P.862 [18]. We operate under the assumption that the speech
recognizer is a black box, i.e. we are not able to make any changes
in it. For testing of our speech enhancement algorithm we used
the DNN-based speech recognizer, described in [19]. The speech
recognition results are evaluated using word error rate (WER) and
sentence error rate (SER).

5.2. Architecture and training of the LSTM-MT network

The frame length and shift were 512 and 256 samples, respectively.
This yields a 256 frequency bins for each frame. The log-power
spectrum is computed as features, the phase is preserved for the
waveform reconstruction. We use a context of seven frames: three
before and three after the current frame. The LSTM-MT architec-
ture is 1792-1024*2-512, namely 256*7 dimension vector for LPS
input features, 2 LSTM layers with 1024 cells for each layer, and
512 nodes for the output T-F LPS and IRM, respectively. Two 256-
dimensional feature vectors were used for LPS and IRM targets.
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The entire framework was implemented using computational net-
work toolkit (CNTK) [20]. The model parameters were randomly
initialized. For the first ten epochs the learning rate was initialized
as 0.01, then decreased by 0.9 after each epoch. The number of
epochs was fixed to 45. Each BPTT segment contained 16 frames
and 16 utterances were processed simultaneously.

For the classic nose suppressor we used α = 0.9 in equation (2),
time constant τN = 1 sec in equation (5), weighting average with
δ = 0.5 in equation (6), and η = 0.5 in equation (9). For suppres-
sion rule estimation in equation (3) we use the log-MMSE suppres-
sion rule, derived in [5].

5.3. Experimental results

The experimental results are presented in Table 1 and illustrated in
Figure 3.

5.3.1. Baseline numbers

”No processing” row in Table 1 contains the evaluation of the
dataset without any processing. We have as a baseline numbers
15.86% WER and 2.65 PESQ. Applying a classic noise suppressor
(row ”Classic NS”) reduces slightly WER to 14.24% and increases
PESQ to 2.69.

5.3.2. LSTM-MT LPS Estimation

Rows two and four in Table 1 lists the average WER, SER, and PESQ
for straightforward estimation of LPS. In the first case the input for
the LSTM-MT network is the noisy signal, in the second case - it
is after processing with the classic noise suppressor. We observe
significant reduction in WER - down to 10.34% in the first case and
substantial improvement in PESQ - up to 3.37. The results after
using the classic NS are negligibly worse. The only trick here is the
multi-style training of the LSTM network.

5.3.3. Approximate Speech Signal Estimation

The ”ASSE” row in Table 1 presents the proposed approximate
speech signal estimation (ASSE)-based results when we combine
the IRM estimated from noisy speech by LSTM-IRM and classic
NS methods. We observe good reduction in WER - down to 12.63%,
and minor improvement in PESQ - up to 2.71.

5.3.4. LSTM-MT LPS Estimation with Pre-Processing

The second row of third block in Table 1 is using the proposed
ASSE-based enhanced speech as pre-processing for straightforward
estimation of LPS. For the waveform synthesis is used the LPS out-
put Ŝ(l) of the LSTM-MT neural network. We see further reduction
of WER to 9.22% and the highest PESQ of 3.41, which is improve-
ment of 0.76 PESQ points.

5.3.5. LSTM-MT IRM Estimation with Pre- and Post-Processing

The row ”+LSTM-IRM” is the full algorithm combining classic
noise suppression with LSTM-MT as described above. For the
waveform synthesis is used the IRM output of the LSTM-MT neural
network to estimate Z(l) as described in equation (9). This is the
best reduction of WER to 8.29%, which is 47.73% relative WER
improvement. This algorithm substantially improves PESQ to 3.30,
but it is lower than with the previous approach.

Fig. 3. The spectrograms using different enhancement approaches.

Table 1. Results in WER(%), SER(%), and PESQ.
Algorithm WER SER PESQ

No processing 15.86 26.07 2.65
+LSTM-LPS 10.34 19.60 3.37
Classic NS 14.24 24.60 2.69

+LSTM-LPS 10.51 19.27 3.36
ASSE 12.63 22.67 2.71

+LSTM-LPS 9.22 18.13 3.41
+LSTM-IRM 8.29 16.93 3.30

5.3.6. Spectrograms

Fig. 3 plots the spectrograms of a processed utterance using different
enhancement approaches. Fig. 3 a) and b) present the spectrograms
of the noise and clean speech signals, respectively. Fig. 3 c) and d)
present the spectrograms of the speech processed by the LSTM-MT
with IRM as a suppression rule, and the classic noise suppressor ap-
proach. We can find that the LSTM-MT approach obviously destroys
the target speech spectrum, while the classic noise suppressor is less
aggressive and leaves a lot of noise and interference unsuppressed.
Fig. 3 e) present the spectrograms of the speech processed by the
LSTM-MT LPS Estimation approach with Pre-Processing. We can
find that the proposed approach can not only obtain the target speech,
but also further suppresses the background noise.

6. CONCLUSION

In this work we proposed a hybrid architecture for speech enhance-
ment combining the advantages of the classic noise suppressor with
the LSTM deep learning networks. All of the processing is in
log-power frequency domain. As evaluation parameters we used
perceptual quality in PESQ terms, and speech recognizer perfor-
mance, under the assumption that the speech recognizer is a black
box. The LSTM network is trained multi-style, to produce both
the estimated log-power spectrum and the ideal ratio mask. Only
this produces substantial reduction of WER and increase in PESQ.
Adding a classic noise suppressor as a preprocessor brings the
highest PESQ achieved, using the estimated ideal ratio mask in a
post-processor results in the lowest WER for this algorithm.
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